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Abstract: This paper addresses the issue of target tracking from a UAV equipped with an
embedded passive seeker (e.g. a camera). The considered target is a non-cooperative ground
vehicle whose trajectory is unknown. We propose a method combining monocular observation
and Model Predictive Control (MPC) that estimates the target state vector while following the
trajectory maximizing its observability. The proposed estimation method is a set-membership
particle filter. Its numerical performances are compared to a typical extended Kalman filter
(EKF) and result in an enhanced robustness.
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1. INTRODUCTION

Efficient characterization of the trajectory of a non coop-
erative target using remote embedded sensor requires the
definition of guidance and estimation techniques. Possi-
ble applications are ground or sea vehicles monitoring in
specific areas, vehicle pursuit, and ground target remote
sensing data. The methods should be jointly selected to
take into account the physical limitations of the seeker and
the constraints linked to the feasibility of the carrier tra-
jectory. The problem considered in this paper is as follows.
A carrier vehicle called the chaser in what follows aims to
estimate the state of a ground vehicle called the target,
using a passive bearing-only embedded seeker (for example
an optical sensor). Such a seeker presents many practical
interests: low energy consumption, low-mass sensors, and
stealth. However, the only available information about the
target is its relative direction with respect to the chaser. As
the range is not accessible, estimation of the target state
(e.g. position and velocity) requires specific chaser ma-
neuvers coupled with an appropriate estimation method.
The guidance law aims to determine these maneuvers so
as to enhance the observability of the target state. The
state estimation method to be considered should be able
to handle measurements depending non linearly on the
state vector. Several approaches can be considered. The
most commonly used methods are probabilistic estima-
tors, such as the Extended Kalman Filter (EKF) or the
Sequential Importance Resampling Particle Filter (SIR-
PF Ristic (2004)). However, these approaches rely on prior
probabilistic descriptions of measurement and state errors.
This is not suitable when these distributions are unknown,
as can be the state evolution of an unknown non-holonomic
target.
Another way of describing uncertainty is defining bounds
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or intervals within which these values are assumed to
remain (set-membership estimation Jaulin (2009)). How-
ever the bearing-only measurement is nonlinear, and most
of the bounded-estimation filters are dedicated to linear
models. For nonlinear estimation, a recent approach called
Box Particle Filter (BPF Abdallah et al. (2007)) has been
introduced. This method links the stochastic approach
with the set-membership determinism. Indeed, the BPF
draws a cloud of possible bounded sets in the state-space
called Box Particles. The measurement is also considered
as a known bounded set. As pointed out previously, the
design of the guidance law for the chaser aims to increase
the observability of the target state vector. This could
be achieved by searching for the law that maximizes an
observation criterion. A straightforward approach is using
the estimate filter estimate covariance matrix, which is
related to the Fisher information matrix (Aidala (1979)).
Model predictive control (MPC) method (Morari and Lee,
1999) determines control inputs resulting from a mini-
mization of a given cost criterion. However, the search for
the optimal values may prove highly time consuming. A
potential approach to avoid this drawback is computing
a minimum of the criterion by evaluating a discrete set
of possible values (Rochefort et al., 2014). This approach
cannot guarantee the optimality of the result but presents
the advantage of fixing the dedicated computation time. In
order to drastically decrease the computation budget, it is
also worthy to fix a priori the structure of the control law.
A suitable candidate for the guidance law structure is the
pursuit guidance law (Shneydor, 1998) which is known to
be well-suited for target tracking. However, this law may
results in loss of observability.
In this paper, the proposed guidance law combines
weighted pursuit guidance and lateral maneuver. The
weights are determined by a discretized MPC module to
minimize the observation criterion. Section 2 presents the
bearing-only tracking problem. Section 3 describes several



tracking estimation techniques. Section 4 describes the
proposed MPC strategy used to enhance the estimation
accuracy. Section 5 presents the simulation results.

2. PROBLEM STATEMENT

In this paper, a UAV (the chaser) equipped with an optical
embedded sensor aims at following the trajectory of a
ground vehicle (the target) while estimating the target
position and velocity. The sensor provides the direction
of the line-of-sight (i.e. the line connecting the centers of
gravity of the ground vehicle and the UAV) as long as
the vehicle remains within its field of view. In order to
describe the dynamical equations and observations, the
following frames will be used. The local reference frame
(LRF ) is the inertial frame. The assumption is made that
the Earth can be locally approximated by a tangent plane.
The reference frame LRF is then (LRFe1,

LRF e2,
LRF e3)

along the East, North, and up directions. The LRF origin
is set at altitude 0 (sea level). The body frame (BF ) of
the chaser has its origin at the chaser’s center of mass and
its attitude in the LRF is defined by the rotation matrix
BLRF→BF . The sensor frame SF is assumed to be fixed to
the body frame. Its attitude in the body frame is defined
by a constant rotation matrix BBF→SF .

Fig. 1. Body frame and LRF frame

2.1 Dynamical model of the target

The target is represented by its center of mass. Its state
vector in LRF consists of:
Xt(k) =

[
xt(k) yt(k) zt(k) V

x
t (k) V

y
t (k) V

z
t (k)

]T
with (xt(k), yt(k)) the horizontal positions, zt(k) the alti-
tude, and V x,y,z(k) the velocity components at time-step
k.

The dynamical target model represents a random walk
behavior and is as follows:

Xt(k) = FkXt(k−1) (1)

where Fk is the state evolution matrix:

Fk =

[
I3 I3dt
O3 R3(αk)

]
(2)

and

R(αk) =

[
cos(αk) − sin(αk) 0
sin(αk) cos(αk) 0

0 0 1

]
with αk ∼ N (0, σ2

α)

2.2 Chaser navigation and flight control

The chaser navigation module is based on an iner-
tial navigation sensor (INS). As it derives, it has to
be updated by additional measurements. The assump-
tion is made that the navigation information is period-
ically available with a given uncertainty. In what fol-
lows, only the navigation filter output is considered (po-
sition, velocity, attitude, and their uncertainties). The
chaser state vector at time-step k is noted Xc(k) =[
xc(k) yc(k) zc(k) V

x
c (k) V

y
c (k) V

z
c (k) ψc(k) θc(k) φc(k)

]T
with ψc(k), θc(k), and φc(k) the Euler angles defining the
chaser attitude (yaw, pitch, roll). Let dc = 9 be the chaser
state dimension.

2.3 Target remote sensing

The target observation is performed using a strap-down
embedded monocular optical sensor. The position of the
camera (sensor frame s) in the BF frame is assumed to be
fixed and known. It is expressed by the rotation matrix
BSF→BF . The chaser is assumed to fly at a fixed altitude.
This is a simple and efficient way to prevent it to crash
on ground obstacles. Then, it remains on a plane named
tracking plane or chaser’s plane. The measurements are the
relative angular direction of the target with respect to the
chaser. In what follows, the measured relative direction of
the target is named the line of sight (LOS). The proposed
strategy consists of a projection of the LOS in the chaser’s
tracking plane. If the chaser trajectory is not colinear with
the projected LOS, the instantaneous crossing point of the
successive projected LOS coincides with the projection of
the target on the chaser’s plane. This projection makes it
possible to estimate the target geographical position and
velocity. The geographical estimated state of the target is
noted Xk ∈ Rd (d = 4) and is defined as follows (3):

Xk =
[
xt(k) yt(k) V

x
t (k) V

y
t (k)

]T
(3)

Fig. 2. Illustration of the target tracking principle

Real measured LOS Let χc = [xc yc zc]
T

and χt =

[xt yt zt]
T

be respectively the chaser’s position and the



target’s real one. Likewise, Vc and Vt refer to their
velocities.

The sensor is modeled as a typical pinhole camera with
a bounded field of view. The field of view boundaries are
modeled in the sensor frame as a domain delimited by a
cone of rectangular section CFoV . The camera’s optical
axis is the axis of symmetry of CFoV and is noted SFe1.
The boundaries of CFoV are ±δ1 in azimuth and ±δ2 in
elevation.

As we use a monocular sensor, the information on the
target is only its direction. We assume that the target
detection is performed by an algorithm that provides the
Line Of Sight (LOS) direction computed in the camera
frame. The LOS between the target and the chaser is
defined as the following normalized vector:

LRFLOS =
1

‖χt − χc‖
(χt − χc) (4)

The considered measurements are the angular orientation
of the LOS in the sensor frame SF . We denote by m1
the azimuth and m2 the elevation angles. Azimuth and
elevation at time k are defined as follows (see Fig 3):

[
m1(k)

m2(k)

]
=

 atan

(
SFyt(k)−

SFyc(k)

xt(k)−SFxc(k)

)
atan

(
SF zt(k)−

SF zc(k)√
(SFyt(k)−SFyc(k))

2+(SFxt(k)−SFxc(k))
2

)
(5)

with SF Xk = BBF→SFBLRF→BFXk (BLRF→BF is the
rotation matrix describing the chaser attitude in the global
frame LRF ). In practice, this observation equation can be
implemented with the atan2() function.

As the angular measurements of the LOS are expressed in
the sensor frame, the LRFLOS vector can be written with
respect to the measurements using equation (6).

LRFLOS = Bbody→LRFBs→body

cos(m2(k)) cos(m1(k))
cos(m2(k)) sin(m1(k))

sin(m2(k))


(6)

Fig. 3. Measurements in the sensor frame SF

Projected LOS The projected LOS is denoted by LRFd
in what follows.

LRFd =
1

‖
∏

e3

LRF
LOS‖

∏
e3

LRFLOS (7)

where
∏

e3
is the projector on the plane z = zc ∈ R.

Then, one can define the projected angular measurement
that corresponds to the angle between the chaser speed
and the projected LOS.

m = [arg(LRFd,Vc)] (8)

Estimation algorithm The angular measurement m of
the LOS is the only available information about the target.
The problem tackled in Section 3 is estimating the state
vector (position and velocity) from this partial informa-
tion. The assumption is made that the measurements are
affected by an uncertainty that depends on the sensor
resolution and the image processing algorithm precision.

Chaser guidance strategy The LOS measurement does
not provide any information about the relative distance
between the chaser and the target. As illustrated in Fig 2,
the chaser speed must not be colinear with the projected
LOS LRFd. Otherwise, the instantaneous crossing point
of the successive projected LOS is not defined. In order to
generate observability on the target position, the chaser
has to maneuver. The maneuvers have to meet several con-
straints: keeping the target in the field of view, following it,
and maximize the target observability. Section 4 presents
an algorithm that aims to optimize the chaser’s maneuvers
while following the target.

Fig 4 gives an overview of the proposed system. An indi-
cation of the frequencies’ orders of magnitude is provided.
The chaser position, velocity, and attitude are assumed to
be provided at 10Hz. The flight control is assumed to drive
the actuators at 100Hz (also called low level control). The
Target estimation frequency is set to 10Hz. The tuning
and the quality of estimation will be defined in Section
4. The guidance update frequency can be adapted to the
dynamics of the system (e.g. 1Hz).

Fig. 4. System overview

3. TARGET TRACKING

In this section, two approaches to solve the target tracking
problem are presented. The first one is the probabilistic
approach. The most commonly used probabilistic estima-
tor is the Extended Kalman Filter (EKF, Aidala (1979),
Ristic (2004)). Although it is able to handle nonlinear
models, it requires some strong hypotheses on the system
uncertainties. Section 3.1 recalls the basics of the EKF.
The second approach is set-membership estimation, which
involves set manipulations. The advantage of this approach
is that it ensures that the estimate belongs to a determined
set. Section 3.2 recalls the basics of the set-membership
estimation. However, these algorithms are often dedicated
to linear systems, which makes them difficult to use in
practice. Sections 3.3 and 3.4 present a mixed approach



that links the set-membership approach with the prob-
abilistic estimation. In what follows, the state vector X
refers to the geographical state (3), and the measurement
vector m refers to the projected angular measurement of
the LOS (8).

3.1 Classic probabilistic tracking estimation

The tracking algorithm aims to estimate the absolute state
Xk of the target. However, many aspects of the problem
remain uncertain: The real target’s evolution model is
unknown, the optical sensor provides incomplete and noisy
information on Xk, and the chaser state (position, velocity,
attitude) is estimated with a given uncertainty. Therefore,
the tracking algorithm has to estimate Xk from incomplete
measurements, taking into account a variety of uncertain-
ties. The estimate of Xk at time-step k is usually written
X̂k. The most frequent approach is the probabilistic filters
family (for example Kalman filters, Monte-Carlo Particle
Filters). Those approaches often quantify the uncertainty

on X̂k by a covariance matrix P̂k.

Equation (1) describes the dynamical model of the target.
However, this model is assumed to be unknown. Therefore,
it has to be approximated with a simplified model. The
probabilistic approach uses an additive noise called process
noise to compensate the lack of knowledge. Let f : Rd −→
Rd be the assumed dynamical model. In our case, we will
assume that ∀X ∈ Rd:

f(X) =

[
I3 I3dt
O3 I3

]
X (9)

Equation (5) describes the observation that can be per-
formed with a given sensor. Let g : Rd −→ Rdmeas be
the observation function (dmeas is the measurement di-
mension, here equal to one). It can be written as mk =
g(Xk−1). As the sensor and the detection algorithm are as-
sumed to have a limited precision, one can use an additive
measurement noise to model it.

The dynamical and observation equations considered in
the tracking algorithm can be rewritten as follows:{

Xk = f(Xk−1) + Wk

mk = g(Xk) + Vk
(10)

with Wk ∼ Lw being the process noise, and Vk ∼
Lv being the measurement noise. Lw and Lv are two
probability distributions.

The state estimation consists in two steps: prediction
and correction. Let Mk = {m1, ...,mk} be the vector of
measurements from time 1 to time k. The prediction step
determines a predictive distribution p(Xk|Mk−1) with re-
spect to the dynamical model uncertainty Lw (also re-
ferred as p(Xk|Xk−1)) and the previous conditional dis-
tribution (estimation density at time k − 1 denoted by
p(Xk−1|Mk−1)). The correction step determines the poste-
rior distribution (estimation density at time k denoted by
p(Xk|Mk)) of the state with respect to the predictive dis-
tribution and the measurements mk and their uncertainty
Lv. Using p(Xk|Mk), one can deduce the state estimation

X̂k = E [Xk|Mk] where E[.] is the expectation (see Fig 5).

Fig. 5. Bayesian estimation

Extended Kalman Filter (EKF) The EKF relies on
a local linearization of the state evolution and of the
measurement equation. Therefore, system (10) has to be
locally linearizable. Thus, a Jacobian computation of f
and g functions is needed:{

Jf k = ∂f
∂X |Xk−1

Jgk = ∂g
∂X |Xk−1

(11)

In our case, Jf k = F.

Table 1. EKF algorithm

Prediction step

Predicted estimation X̂k|k−1 = f(X̂k−1|k−1)

Predicted covariance P̂k|k−1 = Jf (k)
P̂k−1|k−1Jf

T
(k)

+ Q

Correction step

Innovation residual ψk = mk − g(X̂k|k−1)

Innovation covariance Sk = Jg(k)P̂k−1|k−1Jg
T
(k)

+ R

Kalman gain Kk = P̂k|k−1Jg
T
(k)

S−1
k

Updated estimation X̂k|k = X̂k|k + Kkψk

Updated covariance P̂k|k = (Id −KkJg(k))P̂k|k−1

The main advantage of the EKF is its very low com-
putation cost. The EKF solves the estimation problem
assuming that uncertainties on the dynamical model and
on the measurement model can be modeled by Gaussian
noises (process noise and measurement noise). Fig 6 illus-
trates the estimation process. The assumption is also made
that the posterior density p(Xk|mk) is also Gaussian. The
uncertainty propagation and correction is performed using
the Riccati equation. Although those conditions are met in
a variety of situations, the EKF remains unstable in case
of low observability, strong non-linearity, or high initial
uncertainty. Table 1 summarizes the algorithm process,
and Table 2 summarize EKF hypotheses and outputs.

Table 2. Extended Kalman Filter hypotheses
and outputs

Hypotheses

Dynamical model Locally linearizable
Observation model Locally linearizable
Lw Gaussian N (0,Q)
Lv Gaussian N (0,R)
Posterior Gaussian N (0,Pk)

Outputs

Estimation X̂k

Uncertainty covariance P̂k

3.2 Set-membership tracking

Another way to deal with system (10) is the set-
membership state estimation approach. This approach



Fig. 6. Illustration of the EKF process

aims to include all the possible states X and measure-
ments m into their respective including sets {X} and {m}
(Jaulin, 2009).

Like a Bayesian filter, a set-membership state estimator is
designed in two steps (Rassi et al., 2009): the prediction
step propagates the set {Xk−1|k−1}, containing all the
possible states, using the dynamical model. Then, the cor-
rection uses the current measurement set {mk} to correct
the predicted set {Xk|k−1}. Usually, the correction oper-
ation is performed using an inversion of the measurement
equation: the set {Zk} = g−1({mk}) contains the possible
states that can be explained by the current measurement
(given its uncertainty) {mk}. Then, the contraction is
made by an intersection operation:
{Xk|k} = {Xk|k−1} ∩ {Zk}.
This approach makes it possible to describe a guaranteed
set {Xk|k} that contains the real state Xk. Fig 7 illustrates
the estimation theory.

Fig. 7. Illustration of the Set-Membership estimation the-
ory

3.3 Interval analysis

Among the different set-membership approaches, the In-
terval Analysis theory (Moore et al., 2009) is one of the
more computationally convenient. Indeed, the choice is
made to define uncertainties as bounded intervals. The
simplicity of this approach makes it able to tackle numeri-
cal computing issues. The Interval Analysis theory defines
several interval operations recalled in Table 3. In this pa-
per, we will use the concept of box. A box [a] ∈ IRδ(δ ∈ N)
is a vector of intervals that defines the set of all possible
values in an hyperrectangle of the space Rδ. Boxes can
be defined in the state space as [X] ∈ IRd as well as in

the measurement space as [m] ∈ IRdmeas . However, this
approach is very pessimistic, as every set, whatever be
its shape, is roughly approximated by a hyperrectangular
box. Therefore, the target dynamical equations and the
observation equations can be written with this formalism.
System (10) can be rewritten as follows:

{
[Xk] = [f ]([Xk−1]) + [Wk]
[mk] = [g]([Xk]) + [Vk]

(12)

where [f ] and [g] are inclusion functions. An inclusion

function [ψ] is defined as [ψ] : IRδ1 → IRδ2 the minimal

box [ψ]([a]) ∈ IRδ2 containing the image ψ([a]) of a box

[a] ∈ IRδ1 by the function ψ : Rδ1 → Rδ2 (with (δ1, δ2) ∈
N∗). The process and the measurement uncertainties are

[Wk] ∈ IRd and [Vk] ∈ IRdmeas . Like typical noises, their
diameter has to be tuned using the sensor uncertainty and
the level of dynamical model approximation.

Table 3. Interval Analysis operations

Description notation

interval [a] = [a, a] = {x ∈ R, a < x < a} ∈ IR
addition [a] + [b] = [a+ b, a+ b]

subtraction [a]− [b] = [a− b, a− b]

multiplication
[a] ∗ [b] =
[min(ab, ab, ab, ab),max(ab, ab, ab, ab)]

division [a]/[b] = [a, a] ∗ [1/b, 1/b] if ∅ 6∈ [b]
diameter |[a]| = a− a (∈ R)
box [a] = [a,a] = [a1]× [a2]× ...× [an] ∈ IRn

volume |[a]| =
∏n

j=1
|[aj ]| (∈ R)

center C = 1
2

(a + a) (∈ Rd)

Although the Interval Analysis approach is a very de-
terministic way of designing an observer, a Bayesian in-
terpretation can be formulated. Indeed, intervals can be
described as uniform density kernels whose support is the
interval itself. The reader will find some developments
about the relations between set-membership filters and
Bayesian filters in (Gning et al., 2013) and (DeFreitas
et al., 2016). Furthermore, the interval formulation makes
it possible to consider only the support bounds of a dis-
tribution. Therefore, there are very few hypotheses on the
problem uncertainties: values are only assumed to remain
into known bounds. However, this approach can mostly
be used in linear applications. In the next subsection,
we present a method that takes advantage of both the
simplicity of set-membership estimation and of Bayesian
filtering to tackle nonlinear problems.

3.4 Box Regularized Particle Filter: A stochastic set-membership
estimator

A recent approach named Box Particle Filter (BPF) has
been introduced in (Abdallah et al., 2007). The key idea is
taking advantage of the simplicity of the set-membership
approach as well as of a stochastic comprehensiveness.
The method is inspired of Particle Filters (also known
as Monte-Carlo filters) that try to provide an exhaustive
description of the posterior density of the state space given
the measurements. Applications to tracking have been
presented in (Gning et al. (2012), Gning et al. (2013)).
However, those applications examples do not deal with
low-observability. Indeed, the proposed approaches assume
that the range is observable (radar, lidar, sonar sensing
methods, or triangulation measurements). The BPF is a
translation of the conventional particle filters (PF) into the
set-membership theory (Moore et al., 1979). In order to
explore the state space more exhaustively, the BPF draws
a cloud of weighted box particles that are propagated
and contracted as explained in the previous subsection.
However, because several box-hypotheses are considered,



a selection can be made to keep only the more likely boxes.
This allows the algorithm to converge on the dimensions
that are not explicitly linked to the measurements, as the
velocity in our case. Each box particle is weighted by a
weight that quantifies its likelihood. The authors have
recently proposed another version of this filter, called Box
Regularized Particle Filter (BRPF, Merlinge et al. (2016)).

Initialization The BRPF is initialized performing a sub-
paving of a box area delimited by the initial uncertainty
box [P0], that delimits the possible initial target space.
Each box particle i ∈ J1, NK, as part of the sub-paving,
is associated with a weight wik. At the initialization step
(k = 0), all the particles have the same weight: wik = 1

N
∀i ∈ J1, NK.

Prediction step The prediction step is performed us-
ing the first equation of (12) for each particle: [Xi

k] =

[f ]([Xi
k−1]) + [Wk]. Since the box particles are vectors of

intervals, the propagation using interval analysis propa-
gates the velocity uncertainties on the position dimensions.

Correction step In the box particle filter, the correction
step is performed in two parts. To begin, each particle
is intersected with a set of the state space explained by
the measurements. This set is obtained by a current mea-
surement set inversion. This leads to new box particles:
[Xi

k]new = [Xi
k] ∩ [g−1]([mk]).

Then, the weights are updated with respect to the mea-
surements. The weights are updated using the contrac-
tion ratio of each particle (Gning et al., 2013): wi

k =
|[Xi

k]
new |

|[Xi
k
]| wi

k−1 and then normalized.

Resampling step Particle Filters in general suffer a de-
generacy problem (Ristic, 2004). After several iterations,
all but one particle remain with a negligible weight. In
order to enhance the approximation of the posterior den-
sity p(xk|Mk), one can replace the low-weighted particles
with new particles cloned from the high-weighted particles.
This operation can be triggered when too many particles
are low-weighted. Several numerical criteria can be used
for that purpose. The N efficient criterion is used here.
It consists in computing the number of efficient particles
Neff with respect to their weights, Neff = 1∑

i
wi

k
2 . If

Neff < θeffN with θeff ∈ [0, 1] a tuned coefficient, the
resampling operation is triggered. For the BRPF, the re-
sampling step is performed as in a conventional particle
filter. However, instead of cloning the particles that are
the most consistent with the current measurement, these
box particles are subdivided along one dimension (Fig 9).
This makes it possible to increase the resolution of the
boxes that have the higher likelihood (related to weights,
illustrated in bluescale). However, a subdivision of a box
particle implies a choice of the cutting dimension dcut ∈
J1, dK. An efficient way to select the cutting dimension dcut
consists in determining the one that corresponds to the
maximal local uncertainty. Thus, the selected dimension is
the one along which the box particle is the longest. In order
to take into account inhomogeneity of state components, it
is necessary to normalize the box diameter vector. Hence,
we work with a set of homogeneous and normalized box
diameters. The normalization is based on the physical

dimension of each state dimension. A state vector can be
mapped with several sub-vectors defined by their physical
dimensions (position, speed,...). We have chosen to nor-
malize a state vector diameter with the Euclidean norm
of its sub-vectors. Fig 8 illustrates the estimation process.
The reader will notice that the BRPF representation can
be interpreted either as a set intersection approximation
(Fig 7) or as a Bayesian density convolution (Fig 6).

Regularization operation The discretization of the ap-
proximation of the posterior density p(Xk|Mk) can lead
to an exploration of a wrong area and an erroneous es-
timate. One can explore the state space with a more
regular description by providing a kernel to each particle.
Numerically, this kernel is obtained applying a bounded
random noise on the particles. This process, called regu-
larization, was presented in (Musso et al., 2001) to improve
the robustness of conventional particle filters. The authors
have proposed an adaptation of the regularization method
to the Box Particle Filter in (Merlinge et al., 2016). The
Box Particle Filter process, hypotheses and outputs are
recalled in Table 4 and Table 5. The center of a box [Xi

k]

is denoted by Ci
k.

Fig. 8. Illustration of the BRPF process

Fig. 9. Illustration of resampling by subdivision

An advantage of the BRPF over the EKF is that it ex-
plicitly takes into account all the system’s uncertainties
and their relationships: chaser’s position, attitude, and
measurements. The measurement noise only represents the
observation uncertainty. The EKF, for its part, builds a
predicted measurement as if there were no other uncer-
tainty than the measurement noise. As the measurements
depend on the chaser’s position and attitude, their uncer-
tainties are taken into account by an empirical increase
of the measurement noise. The interval analysis makes it
possible to take them into account in a deterministic way.

4. CHASER GUIDANCE USING MODEL
PREDICTIVE CONTROL

In this section, the chaser’s control input is first defined.
The design of the guidance law aims to increase the



Table 4. Box Regularized Particle Filter algo-
rithm

Prediction step ∀i ∈ J1, NK
Particles propagation [Xi

k] = [f ]([Xi
k−1]) + [Wi

k]

Correction step

Contraction [Xi
k]new = [Xi

k] ∩ [g−1]([mk])

Likelihood λik =
|[Xi

k
]new |

|[Xi
k
]|

Updated weights wi
k = λikw̃

i
k−1

Normalized weights w̃i
k =

wi
k∑N

j=1
wj

k

Resampling step if Neff < θeffN

Subdivision
Resampling by subdivision on a
determined dimension for each box
particle dcut

Regularization
Randomly moving the box particles
using bounded kernels.

Table 5. BRPF outputs and hypotheses

Hypotheses

Dynamical model Nonlinear
Observation model Nonlinear
Lw Only a bounded support
Lv Only a bounded support
Posterior Any (discrete approximation)

Outputs

Estimation X̂k =
∑N

i=1
wi

kC
i
k

Uncertainty covariance P̂k =
∑N

i=1
wi

k(X̂k−Ci
k)(X̂k−Ci

k)T

Other moments M̂3(k), M̂4(k)...

Uncertainty hull [Pk] = [Uk,Uk]
with Uk =

⋃
∀i|wi

k
6=0

[Xi
k]

observability of the target state vector. This could be
achieved by searching for the control input that maximizes
an observation criterion. This criterion must quantify the
estimation efficiency. A straightforward approach is using
the filter estimate covariance matrix, witch is related to the
Fisher information matrix (Aidala (1979)). Model predic-
tive control (MPC) method (Morari and Lee, 1999) deter-
mines control inputs resulting in a minimization of a given
cost criterion. However, the search for the optimal values
using a typical iterative algorithm may prove highly time
consuming. A potential approach to avoid this drawback
is computing a minimum of the criterion by evaluating a
discrete set of possible values (Rochefort et al., 2014). This
approach cannot guarantee the optimality of the result but
presents the advantage of fixing the dedicated computation
time. Furthermore, the choice has been made to fix a priori
the structure of the control law. This makes it possible
to guarantee the tracking behavior whatever be the MPC
outputs. A suitable candidate for the guidance law struc-
ture is the pursuit guidance law (Shneydor, 1998) which
is known to be well-suited for target tracking. However,
this law results in loss of observability. In this paper, the
proposed guidance law combines weighted pursuit guid-
ance and lateral maneuver. The weights are determined
by a discretized MPC module to minimize the observation
criterion.

4.1 Control input

The chaser’s goal is twofold: following the target and
estimating its state vector X as precisely as possible.
This implies several constraints that have to be taken

into account in the control law: keeping the target in the
sensor’s field of view, which implies distances constraints,
and maneuver to reduce the magnitude of the error covari-
ance. The UAV control input requires two components:
The desired acceleration and the desired yaw angle. Let
u ∈ R3 and ψd ∈ R respectively be the acceleration input

and the angular input. Let U =
[
uTψd

]T ∈ Rdcont be the
whole control input with dcont = 4 the control dimension.

Following control input The first constraint to be dealt
with is keeping the target in the field of view. One can
define the desired angle LRFψd to track the line of sight
LRFLOS in the LRF frame.

LRFψd = arg
(
LRFd,LRF e1

)
(13)

Then, the acceleration has to be designed to follow the
target while keeping a constant altitude. A possible design
inspired from the typical missile pure pursuit control law
is (Shneydor, 1998):

u1 = κ1Vc ×
(
LRFd× Ṽc

)
(14)

where LRFd is the projection of LRFLOS in a constant
altitude plane (× refers to the cross product) and κ1 ∈ R+

is a gain. Ṽc = 1
‖Vc‖Vc is the normalized chaser velocity

in the inertial frame. This control input tends to maintain
Vc colinear with LRFd.

Lateral maneuvering control input As the observation
is only performed on the LOS direction, there is no
observation on the range value. Therefore, the chaser has
to maneuver to enhance the observability on the range. For
safety reasons, we force the chaser trajectory to remain
into a constant altitude plane. The direct orthogonal
vector to LRFd contained in this plane is:

LRFd⊥ = LRFe3 ×LRF d (15)

Therefore, one can define the following control input:

u2 = κ2Vc ×
(
LRFd⊥ × Ṽc

)
(16)

This control input tends to maintain Vc colinear with
LRFd⊥ (with κ2 ∈ R). In practice, κ2 is bounded by the
chaser dynamics.

Speed maneuvering control input As the target speed is
unknown at the beginning, the chaser velocity norm has
to be adjusted. This requires a third control input that
aims to change the chaser velocity norm (tuned by a gain
κ3 ∈ R):

u3 = κ3Ṽc (17)

In practice, κ3 is bounded by the chaser dynamics.

As a result, the acceleration control input is:

u = u1 + u2 + u3 (18)

4.2 Model Predictive Control (MPC)

We have defined a control input u(κ1, κ2, κ3). The κi
gains have to be tuned to make the control input efficient
to achieve the tracking. In this control architecture, the
control input will be periodically updated using MPC
every TMPC seconds. Those three control components are
equivalent to three distinct behaviors:



• κ1 sets the pursuit behavior of the chaser (without
changing the velocity)
• κ2 sets a lateral motion behavior that aims to en-

hance the target observability (without changing the
velocity)

• κ3 sets the chaser speed norm behavior

In our application, the pursuit behavior has to be main-
tained during the whole mission. Therefore, κ1 can be fixed
and does not require to be periodically updated. However,
the lateral motion and the speed norm have to be adapted
to the situation. Therefore, coefficients κ2 and κ3 will be
periodically updated. This section describes the proposed
strategy to optimize the couple of gains (κ2, κ3).

Model Predictive Control MPC relies on an optimiza-
tion of a cost function J with respect to possible control
sequences. In our case, the MPC module will choose the
couple (κ2, κ3) ∈ R2 that minimizes J(κ2, κ3) over a pre-
diction period kp ∈ Jk+1, k+KhK, with Kh the prediction
horizon. The time-step used in the prediction loop is the
same as the observer (dt). Figure 10 illustrates the MPC
process. A control sequence is periodically chosen among a
set of candidate trajectories. The number Nu of candidate
control sequences (κ2, κ3) is set offline. Therefore, the
computation cost is guaranteed to be known and constant
for the whole optimization process.

Proposed MPC architecture The chosen control sequence
has to meet several constraints on the chaser’s state. The
constraints considered in this article are listed in Table 6.

Table 6. Model Predictive Control constraints

Constraints Associated numerical criterion Example

Chaser’s flight
domain

Acceptable velocity
‖Vc‖ ∈ [V accept

c ]
[20, 100] km/h

Target kept
into the FoV

[
m1(k)

m2(k)

]
∈ [CFOV ]

[
[−40◦, 40◦]
[−40◦, 40◦]

]
Estimated
range

r̂ = ‖χ̂t − χc‖ ∈ [raccept] [50, 300]m

To meet those constraints, the following algorithm is
proposed:

To begin, the target state is predicted over the prediction
horizon (equation 19). The predicted target trajectory is
independent from the candidate trajectory. Therefore, it
can be computed once before the MPC optimization loop.
However, for clarity reasons, Algorithm 1 presents this
computation inside the MPC loop. When MPC is trig-
gered, the current time-step is k. The prediction temporal
loop is performed between time-step kp = k+ 1 and time-
step kp = k +Kh.

X̂kp = f(X̂kp−1) (19)

The associated uncertainty can be propagated using the
Riccati equation (20). Qp is the covariance of the MPC
prediction process noise.

P̂kp|kp = FP̂kp−1F
T + Qp (20)

For each i candidate control sequence, the chaser’s state
can be propagated. Let fc : Rdc × Rdcont → Rd be the
chaser’s prediction model. fc is a simplified model of the
chaser’s dynamical model. Indeed, the prediction of the

chaser’s space has to be very fast to be performed Nu×Kh

times in a minimum amount of time. The ith candidate
control sequence is Ui = Ui(κ2, κ3).

X̂c (kp) = fc(X̂c (kp−1),Ui) (21)

The approximated dynamical model is:

fc(X̂c (kp−1),Ui) =

[
I3 I3dt O3

O3 I3 O3

O3 O3 I3

]
X̂c (kp−1) +

[
O3×1
udt
Ξ

]
(22)

with Ξ =

dtKψ(LRFψd − ψ̂c(kp−1)
0
0

 where Kψ is a gain

comparable with the actual yaw flight control law.

Having computed the predicted state of the two objects,
one can compute a predicted measurement m̂kp using
equation (5):

m̂kp = g(X̂kp−1, X̂c (kp−1)) (23)

Fig. 10. Illustration of the Boolean domain conditions

The MPC algorithm has to choose the best trajectory
among a given set of trajectories. The proposed strategy
consists in eliminating the unacceptable trajectories using
Boolean conditions (Figure 10). The acceptable trajec-
tories are then evaluated with a numerical criteria. The
trajectory associated to the minimal criteria is chosen. If
all the trajectories have been rejected, a control input is set
by default with respect to the cause of the whole rejection.

A first constraint that must be met by the trajectory is
keeping the target in the chaser’s field of view (FoV). The
FoV is defined by a cone that can be written in the sensor
frame with the interval analysis formalism: [CFOV ] =[
[−δ1 δ1]
[−δ2 δ2]

]
(see Section 2.3). Then, a Boolean condition

can be defined, verified if the predicted measurement is in
the field of view:

m̂kp ∈ [CFOV ] ∀kp ∈ Jk + 1, k +KhK (24)

For safety reasons, the chaser should remain in its flight
domain during the whole trajectory. Therefore, the follow-
ing Boolean condition on the predicted velocity can be
defined:

‖V̂c(kp)‖ ∈ [V acceptc ] ∀kp ∈ Jk + 1, k +KhK (25)

A simple way to guarantee that the chaser will stay in
a delimited domain around the target (assuming that
the measurements are available) is eliminating trajectories
that will drive it out of this domain. The proposed formula-
tion relies on an acceptable range interval [raccept] within
which the estimated range must remain. The trajectory



is eliminated if it does not satisfy the following Boolean
condition:

r̂ ∈ [raccept] ∀kp ∈ Jk + 1, k +KhK (26)

If the previous Boolean conditions are met, one can define
a refined selection criterion. This criterion is based on the
target observability. It can be quantified using the pre-
dicted estimation uncertainty using the Riccati equation
(Kalman formulation, see Table 2).

Skp = Jg(kp)P̂kp−1|kp−1Jg
T
(kp)

+ R

Kkp = P̂kp|kp−1Jg
T
(kp)

S−1kp
P̂kp = (Id −KkpJg(kp))P̂kp|kp−1

(27)

with Jg(kp) obtained from equation (11) and R a covari-

ance matrix modeling the predicted observation uncer-
tainty.
From this predicted covariance matrix P̂kp , one can quan-
tify the observability. The proposed approach is based on
the spectral norm of the covariance matrix. Numerically,
it consists of a diagonalization strategy using the Singular
Values Decomposition (SVD) method. The instantaneous
observation criterion is noted jkp and is defined as the
maximum of the covariance matrix’s singular values. In-
deed, the the larger singular value of P̂kp quantifies the
total maximum uncertainty. This can be illustrated by the
major axis of an ellipsoid defined by P̂kp (Fig 11).

Fig. 11. Illustration of larger singular value of P̂kp{
(U,Σ,V) = SVD(P̂kp)
jkp = maxi (Σi,i)

(28)

If the trajectory has not been rejected, one can compute
a criterion for the whole trajectory i:

Ji =
∑
kp

jkp (29)

This criterion makes it possible to compare the ith trajec-
tory with the others acceptable trajectories. The following
discrete optimization can be performed to find the trajec-
tory that minimizes Ji:

(κ2, κ3) = arg mini={1,...,Nu} (Ji(κ2, κ3)) (30)

However, the chaser and the target model used for the
MPC prediction are very simplified models. While it is pos-
sible to monitor the chaser velocity at low level to prevent
it to go out of its flight domain, one cannot guarantee that
the other conditions are always met (unpredictable loss of
measurement or too important predicted range). In such a
situation, their predicted states can diverge from their real
values and lead to a rejection of all the trajectories. This
issue can be tackled using default control sequences that
will be applied with respect to the cause of the whole set of
trajectories rejection. Therefore, the following strategy is
proposed. If the trajectories have all been rejected because

Result: Sub-optimal (κ2, κ3)

P̂k is the current covariance estimation
for i ∈ J1, NkK do

for kp ∈ Jk + 1, k +KhK do
Predict target state (19)
Predict covariance (20)
Predict chaser state (21)
Predict measurement (23)
if FoV condition (24) then

if Speed condition (25) then
if Range condition (26) then

Compute the instantaneous MPC
criterion (28)

else
Candidate trajectory i rejected

end
else

Candidate trajectory i rejected
end

else
Candidate trajectory i rejected

end
end
Criterion for the whole trajectory i if not rejected (29)

end
Find the trajectory i associated with the corresponding
(κ2, κ3) that minimizes the MPC criterion (30).

Algorithm 1: MPC architecture

of the FoV condition, the control input is automatically
set to a research mode sequence that aims to recover the
measurements. {

U = 0
LRFψd = δψk

(31)

If the trajectories have all been rejected because of the
range condition, a following mode is set to take back the
chaser into the acceptable range set. κ2 = 0

κ3 = ±κ3fm
LRFψd = δψk ∀k ∈ N

(32)

where δψ and κ3fm
are increasing coefficients to be set. If

r̂ < raccept, κ3 = κ3fm
and κ3 = −κ3fm

else.

5. NUMERICAL RESULTS

In this section, the coupled observation-guidance MPC
strategy is tested in different configurations. The consid-
ered chaser is a typical quadrotor UAV (see Table 7). In
our numerical simulations, the chaser is modeled with a
realistic dynamical model and flight control.

Table 7. Chaser’s features

Constructor Parrot
Model AR DRONE 2.0
Propulsion Rotary wing
Number of motors 4
Type electrical brushless 28,000 rpm
Maximum speed 18 km/h
Dimensions 451 × 451 mm
Mass 420 g
Optical sensor resolution 720 p
Field of view (2δ1 × 2δ2) 92◦× 92◦



In order to compare the possible strategies and algorithms,
the following criterion is used, evaluated for NMC ∈ N
Monte-Carlo simulations: the Root Mean Square Error
(RMSE) between the estimation X̂k and the real target’s
state Xk.

RMSEk =

√∑NMC

i=1 (X̂k −Xk)2

NMC
(33)

The mean RMSE is RMSE = 1
Nk

∑Nk

k=1 RMSEk with Nk
the number of iterations of a simulation.

5.1 Interest of the MPC guidance strategy

In this paragraph, the following scenario is considered:
the target moves in a straight line at constant speed and
constant altitude. Three strategies are compared: the pure
pursuit mode (κ1 = 1, κ2 = 0, κ3 = 0), the random lateral
mode (κ1 = 1, κ2 ∼ U[κ2,κ2], κ3 = 0), and the MPC mode

described in Section 4. In practice, κ2 and κ3 are bounded
by the chaser dynamics. For the considered chaser, κ2 ∈
[κ2, κ2] = [−5, 5] and κ3 ∈ [κ3, κ3] = [−0.1, 0.1]. Table
8 describes the simulation parameters. The estimation
algorithm used in this test is the Box Regularized Particle
Filter (BRPF).

Table 8. Simulation parameters

Initial chaser’s state [χT
c(0)

VT
c(0)

]T [0, 0, 10, 1, 0, 0]T (m, m/s)

Initial target’s state X0 [5, 5, 1, 1]T (m, m/s)

Initial state guest X̂0 [χT
c(0)

, O1×3]T

Initial estimation uncertainty P̂0 ±[6m, 6m, 3m/s, 3m/s]T

Measurement uncertainty ±[3◦, 3◦] (azimuth, elevation)
Chaser’s position uncertainty ±[0.3, 0.3, 0.3]m
Chaser’s attitude uncertainty ±[3◦, 3◦, 3◦]
Simulation duration 40s
MPC update frequency 0.33Hz
MPC horizon 6s
Observation frequency 10Hz
Admissible MPC chaser’s range [5,100]m
Admissible MPC chaser’s speed [0.1,5]m/s

Table 9 shows the mean RMSE errors obtained with
the three strategies (100 Monte-Carlo runs). The MPC
guidance strategy appears to perform far better than the
pure pursuit strategy. The random lateral mode shows
that a random choice of κ2 is not sufficient to make the
estimator converge. This underlines the necessity of an
optimized control strategy.

Table 9. RMSE results: control strategies com-
parisons (100 simulations)

Pure pursuit random κ2
proposed MPC
strategy

RMSE x (m) 18.3 12.8 3.75
RMSE y (m) 18.6 13.7 2.73
RMSE Vx (m/s) 0.96 0.75 0.68
RMSE Vy (m/s) 0.98 0.78 0.73

5.2 Filter robustness comparison

This section compares the estimation performances of the
Extended Kalman Filter (EKF) and the Box Regularized
Particle Filter (BRPF) presented in section 3 using MPC

Fig. 12. Pure pursuit - estimation behavior

Fig. 13. MPC strategy - estimation behavior

guidance law. The proposed scenario is as follows: the tar-
get performs a random walk according to model (2). The
random angle’s standard deviation is σα = 10−2. The same
trajectory has been used for all the simulations (Fig 14).
For each simulation i, the mean error Ei is obtained as the
average of all estimation errors |X̂k −Xk| where k is the
estimation time. Table 10 presents the mean of the errors
obtained for the two filters for 100 simulations. The best
column contains the lowest value of Ei. Likewise, the worst
column contains the highest value of Ei. The RMSE value
is the mean of the Root Mean Square Errors.
The main advantages of the EKF are a very low computa-
tion cost and an implementation simplicity. Furthermore,
its Bayesian approach theoretically allows it to converge
accurately on the maximum of likelihood. However, it
suffers instabilities for bearing-only tracking applications
(Aidala, 1979). This can result in a sudden and huge
divergence that is often impossible to catch up. In par-
ticular, abrupt course alterations can make it diverge. In
our results, the EKF RMSE is strongly degraded by those
sudden divergences.
The BRPF, since it performs interval analysis operations,
may be more pessimistic than a Bayesian filter. However,
its mean best errors are comparable to the EKF’s ones.
Furthermore, it has been shown to be robust to strong
non-linearities (Merlinge et al., 2016). This is confirmed in
these results.
Table 10 also presents the mean computation time for
each filter (for one estimation call). Those values have



been obtained with a desktop computer running Matlab.
The time line underlines the EKF low computation cost
(0.35ms) with respect to the BRPF (2.5ms). However,
since the observation filter frequency is 10Hz, the real-time
condition is met for both filters.

Table 10. Mean error results: EKF and BRPF
comparison (MPC strategy, 100 simulations)

EKF BRPF
best RMSE worst best RMSE worst

x (m) 0.609 37.9 125 0.576 3.53 15.6
y (m) 0.988 36.4 136 1.17 3.91 14.6
Vx (m/s) 0.299 9.28 28.5 0.417 0.844 2.47
Vy (m/s) 0.372 9.90 30.8 0.329 0.780 2.34
Time (ms) 0.35 2.5

Fig. 14. Random walk target trajectory

5.3 Criterion evolution

This section illustrates the MPC behavior. Fig 15 shows
a simulation of one MPC update step. The chaser has
to choose one trajectory among a set of candidate tra-
jectories. For this MPC update, several trajectories have
been rejected because of the distance Boolean criterion.
Indeed, they would have led the chaser too close to the
target. Every uncertainty has been represented by a set:
the chaser position, the target state estimation, and the
measurements (the LOS, as it is a cone, can be formalized
by an angular box). Fig 16 shows the criterion values
used to perform the control update. On the left side is
plotted the chaser and target trajectories, and the boxes
used to perform the estimation (red rectangles) for the
three first MPC updates. On the left side is plotted the
corresponding criterion and its minimum (with respect
to κ2). This is the result of the simulation of all the
trajectories using the target state estimation at time t.
Applying the trajectory that minimizes the observation
criterion until the next MPC update, one obtains the
smallest possible uncertainty estimation. At time t=3s,
the estimator has very few knowledge on the target state.
Performing maneuvers perpendicular to the LOS helps it
to reduce its uncertainty around the target real state.

6. CONCLUSION AND FUTURE WORK

This paper has presented a tracking system made of two
coupled algorithms. The first algorithm, based on a set-
membership particle filter (BRPF), aims to estimate the

Fig. 15. MPC trajectories

Fig. 16. MPC simulation

state of a distant ground target (geographical position
and velocity). The second algorithm, based on Model
Predictive Control (MPC), aims to optimize the control
input to maximize the estimator’s precision. The MPC
algorithm is shown to be efficient in maximizing the target
observability. Since the structure of the control law has
been fixed a priori, the chaser behavior is guaranteed
to remain in a suitable flight domain. Furthermore, the
discretization of the possible control values guarantees a
constant computation cost. The set-membership particle



filtering approach is shown to be more robust than a
Bayesian EKF. Furthermore, it respects real-time compu-
tational constraints..

In the short term, the authors are working on an experi-
ment to quantify more accurately the algorithm behavior
and the associated computation costs in a real situation.
Future work will tackle the issue of multi-target tracking
and multi-chaser surveillance.
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